Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 466: 114981, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580198

RESUMO

This study verified the effects of the natural compounds berberine and hesperidin on seizure development and cognitive impairment triggered by pentylenetetrazole (PTZ) in zebrafish. Adult animals were submitted to a training session in the inhibitory avoidance test and, after 10 minutes, they received an intraperitoneal injection of 25, 50, or 100 mg/kg berberine or 100 or 200 mg/kg hesperidin. After 30 minutes, the animals were exposed to 7.5 mM PTZ for 10 minutes. Animals were submitted to the test session 24 h after the training session to verify their cognitive performance. Zebrafish larvae were exposed to 100 µM or 500 µM berberine or 10 µM or 50 µM hesperidin for 30 minutes. After, larvae were exposed to PTZ and had the seizure development evaluated by latency to reach the seizure stages I, II, and III. Adult zebrafish pretreated with 50 mg/kg berberine showed a longer latency to reach stage III. Zebrafish larvae pretreated with 500 µM berberine showed a longer latency to reach stages II and III. Hesperidin did not show any effect on seizure development both in larvae and adult zebrafish. Berberine and hesperidin pretreatments prevented the memory consolidation impairment provoked by PTZ-induced seizures. There were no changes in the distance traveled in adult zebrafish pretreated with berberine or hesperidin. In larval stage, berberine caused no changes in the distance traveled; however, hesperidin increased the locomotion. Our results reinforce the need for investigating new therapeutic alternatives for epilepsy and its comorbidities.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38228266

RESUMO

Climate change increasingly influences the loss of biodiversity, especially in ectothermic organisms, which depend on environmental temperatures to obtain heat and regulate their life cycle. Studies that aim to understand the impact of temperature variation are important to better understand the possible impacts generated on the homeostasis of ectothermic organisms. Our objective was to characterize the responses of juvenile Liolaemus arambarensis lizards to abrupt changes in temperature, quantifying markers of body condition, intermediary and hormonal metabolism and oxidative balance. We collected 45 juvenile individuals of L. arambarensis (winter: 20 and summer: 25) in Barra do Ribeiro, Brazil. We transported the animals to the laboratory, where they were acclimatized for five days at a temperature of 20 °C, then divided and exposed to temperatures of 10 °C, 20 °C, 30 °C and 40 °C for 24 h. After exposure, the animals were euthanized and the brain, caudal muscle, thigh, and liver tissues were extracted for quantification of biomarkers of metabolism (glycogen and total proteins) and oxidative balance (acetylcholinesterase, superoxide dismutase, catalase, glutathione-S-transferase and lipoperoxidation) and plasma for corticosterone quantification. The results show that L. arambarensis is susceptible to sudden temperature variations, where higher temperatures caused greater activity of antioxidant enzymes, increased lipoperoxidation and higher plasma levels of corticosterone in animals eliminated in winter. The present study demonstrated that abrupt changes in temperature could significantly modify the homeostatic mechanisms of animals, which could lead to oxidative stress and a potential trade-off between survival and growth/reproduction. In this context, the organism mobilizes energy resources for survival, with possible damage to growth and reproduction. Demonstrate that a change in temperature can be a potential factor in extinction for a species given the profile of global climate change.


Assuntos
Acetilcolinesterase , Lagartos , Animais , Temperatura , Corticosterona , Estresse Oxidativo , Lagartos/fisiologia
3.
Mol Neurobiol ; 61(2): 609-621, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37648841

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative disease characterized by neuropsychiatric disturbance, cognitive impairment, and locomotor dysfunction. In the early stage (chorea) of HD, expression of dopamine D2 receptors (D2R) is reduced, whereas dopamine (DA) levels are increased. Contrary, in the late stage (bradykinesia), DA levels and the expression of D2R and dopamine D1 receptors (D1R) are reduced. 3-Nitropropionic acid (3-NPA) is a toxin that may replicate HD behavioral phenotypes and biochemical aspects. This study assessed the neurotransmitter levels, dopamine receptor gene expression, and the effect of acute exposure to quinpirole (D2R agonist) and eticlopride (D2R antagonist) in an HD model induced by 3-NPA in adult zebrafish. Quinpirole and eticlopride were acutely applied by i.p. injection in adult zebrafish after chronic treatment of 3-NPA (60 mg/kg). 3-NPA treatment caused a reduction in DA, glutamate, and serotonin levels. Quinpirole reversed the bradykinesia and memory loss induced by 3-NPA. Together, these data showed that 3-NPA acts on the dopaminergic system and causes biochemical alterations similar to late-stage HD. These data reinforce the hypothesis that DA levels are linked with locomotor and memory deficits. Thus, these findings may suggest that the use of DA agonists could be a pharmacological strategy to improve the bradykinesia and memory deficits in the late-stage HD.


Assuntos
Dopamina , Doenças Neurodegenerativas , Nitrocompostos , Propionatos , Salicilamidas , Animais , Dopamina/metabolismo , Quimpirol/farmacologia , Peixe-Zebra/metabolismo , Hipocinesia , Receptores de Dopamina D2/metabolismo , Agonistas de Dopamina/farmacologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Receptores de Dopamina D1/metabolismo
4.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 521-534, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37480487

RESUMO

The danger of ionizing radiation exposure to human health is a concern. Since its wide use in medicine and industry, the development of radioprotectors has been very significant. Adenosine exerts anti-inflammatory actions and promotes tissue protection and repair, by activating the P1 receptors (A1, A2A, A2B, and A3). Zebrafish (Danio rerio) is an appropriate tool in the fields of toxicology and pharmacology, including the evaluation of radiobiological outcomes and in the search for radioprotector agents. This study aims to evaluate the effect of adenosine in the toxicity induced by radiation in zebrafish. Embryos were treated with 1, 10, or 100 µM adenosine, 30 min before the exposure to 15 Gy of gamma radiation. Adenosine potentiated the effects of radiation in heart rate, body length, and pericardial edema. We evaluated oxidative stress, tissue remodeling and inflammatory. It was seen that 100 µM adenosine reversed the inflammation induced by radiation, and that A2A2 and A2B receptors are involved in these anti-inflammatory effects. Our results indicate that P1R activation could be a promising pharmacological strategy for radioprotection.


Assuntos
Adenosina , Peixe-Zebra , Humanos , Animais , Adenosina/farmacologia , Raios gama/efeitos adversos , Frequência Cardíaca , Anti-Inflamatórios
5.
Artigo em Inglês | MEDLINE | ID: mdl-36934998

RESUMO

The dopaminergic neurotransmitter system is implicated in several brain functions and behavioral processes. Alterations in it are associated with the pathogenesis of several human neurological disorders. Pharmacological agents that interact with the dopaminergic system allow the investigation of dopamine-mediated cellular and molecular responses and may elucidate the biological bases of such disorders. Zebrafish, a translationally relevant biomedical research organism, has been successfully employed in prior psychopharmacology studies. Here, we evaluated the effects of quinpirole (dopamine D2/D3 receptor agonist) in adult zebrafish on behavioral parameters, brain-derived neurotrophic factor (BDNF) and neurotransmitter levels. Zebrafish received intraperitoneal injections of 0.5, 1.0, or 2.0 mg/kg quinpirole or saline (control group) twice with an inter-injection interval of 48 h. All tests were performed 24 h after the second injection. After this acute quinpirole administration, zebrafish exhibited decreased locomotor activity, increased anxiety-like behaviors and memory impairment. However, quinpirole did not affect social and aggressive behavior. Quinpirole-treated fish exhibited stereotypic swimming, characterized by repetitive behavior followed by immobile episodes. Moreover, quinpirole treatment also decreased the number of BDNF-immunoreactive cells in the zebrafish brain. Analysis of neurotransmitter levels demonstrated a significant increase in glutamate and a decrease in serotonin, while no alterations were observed in dopamine. These findings demonstrate that dopaminergic signaling altered by quinpirole administration results in significant behavioral and neuroplastic changes in the central nervous system of zebrafish. Thus, we conclude that the use of quinpirole administration in adult zebrafish may be an appropriate tool for the analysis of mechanisms underlying neurological disorders related to the dopaminergic system.


Assuntos
Agonistas de Dopamina , Peixe-Zebra , Animais , Humanos , Agonistas de Dopamina/farmacologia , Quimpirol/farmacologia , Receptores de Dopamina D3 , Dopamina/farmacologia , Fator Neurotrófico Derivado do Encéfalo , Atividade Motora
6.
Neurochem Res ; 48(6): 1889-1899, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36729312

RESUMO

Epilepsy is characterized by the manifestation of spontaneous and recurrent seizures. The high prevalence of comorbidities associated with epilepsy, such as cognitive dysfunction, affects the patients quality of life. Adenosine signaling modulation might be an effective alternative to control seizures and epilepsy-associated comorbidities. This study aimed to verify the role of adenosine modulation on the seizure development and cognitive impairment induced by pentylenetetrazole (PTZ) in zebrafish. At first, animals were submitted to a training session in the inhibitory avoidance test and, after 10 min, they received an intraperitoneal injection of valproate, adenosine A1 receptor agonist cyclopentyladenosine (CPA), adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), adenosine A2A receptor antagonist ZM 241385, adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nony1)-adenine hydrochloride (EHNA) or the nucleoside transporter inhibitor dipyridamole. Thirty min after the intraperitoneal injection, the animals were exposed to 7.5 mM PTZ for 10 min, where they were evaluated for latency to reach the seizure stages (I, II, and III). Finally, 24 h after the training session, the animals were submitted to the inhibitory avoidance test to verify their cognitive performance during the test session. Valproate, CPA, and EHNA showed antiseizure effects and prevented the memory impairment induced by PTZ exposure. DPCPX, ZM 241385, and dipyridamole pretreatments caused no changes in seizure development; however, these drugs prevented memory impairment without altering locomotion. Our results reinforce the antiseizure effects of adenosine signaling and support the idea that the involvement of adenosine in memory processes may be a target for preventive strategies against cognitive impairment associated with epilepsy.


Assuntos
Epilepsia , Pentilenotetrazol , Animais , Pentilenotetrazol/toxicidade , Adenosina/farmacologia , Peixe-Zebra , Ácido Valproico/efeitos adversos , Qualidade de Vida , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Dipiridamol/efeitos adversos
7.
Pharmacol Biochem Behav ; 220: 173455, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063969

RESUMO

Major depressive disorder (MDD) has increasingly reached the world population with an expressive increase in recent years due to the COVID-19 pandemic. Here we used adult zebrafish (Danio rerio) as a model to verify the effects of reserpine on behavior and neurotransmitter levels. We observed an increase in the immobile time and time spent in the bottom zone of the tank in reserpine-exposed animals. The results demonstrated a decrease in distance traveled and velocity. Reserpine exposure did not induce changes in memory and social interaction compared to the control group. We also evaluated the influence of exposure to fluoxetine, a well-known antidepressant, on the behavior of reserpine-exposed animals. We observed a reversal of behavioral alterations caused by reserpine. To verify whether behavioral alterations in the putative depression model induced by reserpine could be prevented, the animals were subjected to physical exercise for 6 weeks. The results showed a protective effect of the physical exercise against the behavioral changes caused by reserpine in zebrafish. In addition, we observed a reduction in dopamine and serotonin levels and an increase in the 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the brain. Physical exercise was able to prevent the changes in dopamine and serotonin levels, reinforcing that the preventive effect promoted by physical exercise is related to the modulation of neurotransmitter levels. Our findings showed that reserpine was effective in the induction of a putative depression model in zebrafish and that physical exercise may be an alternative to prevent the effects induced by reserpine.


Assuntos
COVID-19 , Transtorno Depressivo Maior , Ácido 3,4-Di-Hidroxifenilacético , Animais , Antidepressivos/farmacologia , Comportamento Animal , Depressão/induzido quimicamente , Depressão/prevenção & controle , Transtorno Depressivo Maior/tratamento farmacológico , Dopamina/farmacologia , Exercício Físico , Fluoxetina/farmacologia , Humanos , Pandemias , Reserpina/farmacologia , Serotonina , Peixe-Zebra
9.
Artigo em Inglês | MEDLINE | ID: mdl-35843370

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder, characterized by motor dysfunction, psychiatric disturbance, and cognitive decline. In the early stage of HD, occurs a decrease in dopamine D2 receptors and adenosine A2A receptors (A2AR), while in the late stage also occurs a decrease in dopamine D1 receptors and adenosine A1 receptors (A1R). Adenosine exhibits neuromodulatory and neuroprotective effects in the brain and is involved in motor control and memory function. 3-Nitropropionic acid (3-NPA), a toxin derived from plants and fungi, may reproduce HD behavioral phenotypes and biochemical characteristics. This study investigated the effects of acute exposure to CPA (A1R agonist), CGS 21680 (A2AR agonist), caffeine (non-selective of A1R and A2AR antagonist), ZM 241385 (A2AR antagonist), DPCPX (A1R antagonist), dipyridamole (inhibitor of nucleoside transporters) and EHNA (inhibitor of adenosine deaminase) in an HD pharmacological model induced by 3-NPA in adult zebrafish. CPA, CGS 21680, caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA were acutely administered via i.p. in zebrafish after 3-NPA (at dose 60 mg/kg) chronic treatment. Caffeine and ZM 241385 reversed the bradykinesia induced by 3-NPA, while CGS 21680 potentiated the bradykinesia caused by 3-NPA. Moreover, CPA, caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA reversed the 3-NPA-induced memory impairment. Together, these data support the hypothesis that A2AR antagonists have an essential role in modulating locomotor function, whereas the activation of A1R and blockade of A2AR and A1R and modulation of adenosine levels may reduce the memory impairment, which could be a potential pharmacological strategy against late-stage symptoms HD.


Assuntos
Cafeína , Peixe-Zebra , Adenosina/farmacologia , Animais , Cafeína/farmacologia , Dipiridamol/farmacologia , Dopamina , Hipocinesia , Nitrocompostos , Propionatos , Receptor A2A de Adenosina/genética
10.
Neurotoxicol Teratol ; 93: 107109, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35777679

RESUMO

Purinergic signaling is a pathway related to pain underlying mechanisms. Adenosine is a neuromodulator responsible for the regulation of multiple physiological and pathological conditions. Extensive advances have been made to understand the role of adenosine in pain regulation. Here we investigated the effects of purinergic compounds able to modulate adenosine production or catabolism on pain responses induced by Acetic Acid (AA) in zebrafish larvae. We investigated the preventive role of the ecto-5'-nucleotidase inhibitor adenosine 5'-(α,ß-methylene)diphosphate (AMPCP) and adenosine deaminase inhibitor erythro-9-(2-Hydroxy-3-nonyl)-adenine (EHNA) on the AA-pain induced model. The pain responses were evaluated through exploratory and aversive behaviors in zebrafish larvae. The exploratory behavior showed a reduction in the distance covered by animals exposed to 0.0025% and 0.050% AA. The movement and acceleration were reduced when compared to control. The treatment with AMPCP or EHNA followed by AA exposure did not prevent behavioral changes induced by AA for any parameter tested. There were no changes in aversive behavior after the AA-induced pain model. After AA-induced pain, the AMP hydrolysis increased on zebrafish larvae. However, the AMPCP or EHNA exposure did not prevent changes in AMP hydrolysis induced by the AA-induced pain model in zebrafish larvae. Although AMPCP or EHNA did not show differences in the AA-induced pain model, our results revealed changes in AMP hydrolysis, suggesting the involvement of the purinergic system in zebrafish larvae pain responses.


Assuntos
5'-Nucleotidase , Peixe-Zebra , 5'-Nucleotidase/metabolismo , Adenina , Adenosina/metabolismo , Inibidores de Adenosina Desaminase , Monofosfato de Adenosina/metabolismo , Animais , Difosfatos , Larva/metabolismo , Nucleosídeos , Dor/induzido quimicamente , Peixe-Zebra/metabolismo
11.
Behav Brain Res ; 432: 113974, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35738339

RESUMO

Epilepsy is characterized by the occurrence of seizures, and the high prevalence of epilepsy-associated comorbidities affects the quality of patients' life. We investigated the effects of pentylenetetrazole (PTZ) exposure in zebrafish cognitive performance on inhibitory avoidance test. The animals were exposed to 7.5 mM PTZ for 10 min, in the acquisition (before training) and in the consolidation memory phases (after training). In the acquisition phase, the animals were submitted to PTZ-induced seizures and trained in periods of 1, 24, or 48 h after exposure, and 24 h after training were tested. In the consolidation phase, animals were trained and exposed to PTZ 10 min after training and were tested 24 h later. Control groups in periods of 1, 24, or 48 h before or 10 min after training showed a significantly increased latency to enter the dark compartment. The latencies between training and test sessions did not differ in PTZ groups of animals exposed and trained 1 and 24 h or exposed to PTZ 10 min after training. At 48 h, animals exposed to PTZ showed an increased latency to enter the dark compartment. Animals exposed to PTZ and trained 1 h later increased the traveled distance, when compared to the control group. Traveled distance did not differ in animals that were exposed to PTZ and trained 24 and 48 h, or 10 min after training. Our findings indicate that PTZ causes a cognitive deficit in the pre-and post-training phase, allowing us to explore the influence of seizures at different memory phases.


Assuntos
Epilepsia , Pentilenotetrazol , Animais , Anticonvulsivantes/farmacologia , Memória , Pentilenotetrazol/toxicidade , Convulsões/induzido quimicamente , Peixe-Zebra
13.
Behav Brain Res ; 423: 113786, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35124136

RESUMO

The zebrafish has been considered an ideal model for studies of complex behaviors since its behavioral repertoire is well described. Therefore, this study evaluated the perceived pain through behavioral changes in zebrafish larvae. Here we investigated the Acetic Acid (AA) effects on zebrafish larvae exposed in a short-time period (60 s) and the preventive effect from routinely used compounds, Dimethyl Sulfoxide (DMSO), Ethanol (EtOH), Ibuprofen (IBP), and Paracetamol (PAR). In addition, the effect of P2×7 antagonist, A740003, and pannexin channel 1 (PANX-1) inhibitor Probenecid (PROB) on AA-induced behavioral changes were evaluated. AA impaired the distance covered, acceleration, movement, and latency to the first entry in the center from 5 dpf exposed larvae. At 0.050% AA, PAR prevented alterations from the distance covered, acceleration, and movement. Surprisingly, 0.3% DMSO prevented behavioral changes induced by AA. However, the effects from 0.2% DMSO were not prominent. We used 0.2% DMSO as a PROB diluent. PROB prevented the changes in distance and movement observed at both AA concentrations (0.0025% and 0.05%) tested. Since EtOH had no analgesic properties, we used it as an A740003 vehicle to observe the analgesic effects of this compound. As noted, A740003 did not prevent the behavioral changes in the AA-induced pain model. In contrast, 0.2% DMSO and PROB prevented AA-induced behavioral changes. These data enforce that zebrafish could be used in translational studies since this species has behavioral responses related to pain in the early stages of development and responses to analgesics similar to observed in mammals.


Assuntos
Analgésicos/farmacologia , Comportamento Animal/efeitos dos fármacos , Conexinas , Dimetil Sulfóxido/farmacologia , Dor , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7 , Proteínas de Peixe-Zebra , Animais , Conexinas/antagonistas & inibidores , Conexinas/metabolismo , Modelos Animais de Doenças , Larva , Dor/tratamento farmacológico , Dor/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo
14.
Front Pharmacol ; 13: 833227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126165

RESUMO

Zebrafish is a prominent vertebrate model, with many of its advantages related to its development, life cycle, and translational ability. While a great number of behavioral phenotypes and tasks to evaluate them are available, longitudinal studies across zebrafish life stages are scarce and made challenging because of the differences between protocols and endpoints assessed at each life stage. In this mini review, we highlight the relevance that longitudinal studies could have for neurobehavioral pharmacology using this model. We also present possible strategies to standardize behavior endpoints in domains related to human diseases throughout the life cycle, especially between larvae and adult fish. Furthermore, we discuss the remaining difficulties of these analyses and explore future advances needed to bridge this knowledge gap.

15.
Neurotoxicol Teratol ; 89: 107058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34942342

RESUMO

The use of pesticides has continue grown over recent years, leading to several environmental and health concerns, such as the contamination of surface and groundwater resources and associated biota, potentially affecting populations that are not primary targets of these complex chemical mixtures. In this work, we investigate lethal and sublethal effects of acute exposure of methomyl commercial formulation in zebrafish embryo and larvae. Methomyl is a broad-spectrum carbamate insecticide and acaricide that acts primarily in acetylcholinesterase inhibition (AChE). Methomyl formulation 96 h-LC50 was determined through the Fish Embryo Acute Toxicity Test (FET) and resulted in 1.2 g/L ± 0.04. Sublethal 6-day exposure was performed in six methomyl formulation concentrations (0.5; 1.0; 2.2; 4.8; 10.6; 23.3 mg/L) to evaluate developmental, physiological, morphological, behavioral, biochemical, and molecular endpoints of zebrafish early-development. Methomyl affected embryo hatching and larva morphology and behavior, especially in higher concentrations; resulting in smaller body and eyes size, failure in swimming bladder inflation, hypolocomotor activity, and concentration-dependent reduction of AChE activity; demonstrating methomyl strong acute toxicity and neurotoxic effect.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Acetilcolinesterase/farmacologia , Animais , Embrião não Mamífero , Larva , Metomil , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia
16.
Curr Neuropharmacol ; 20(3): 540-549, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-34254919

RESUMO

Sleep is an evolutionarily conserved phenomenon, being an important biological necessity for the learning process and memory consolidation. The brain displays two types of electrical activity during sleep: slow-wave activity or Non-Rapid Eye Movement (NREM) sleep, and desynchronized brain wave activity or Rapid Eye Movement (REM) sleep. There are many theories regarding "Why we need to sleep?"; one of them is the synaptic homeostasis. This theory suggests the role of sleep in the restoration of synaptic homeostasis, which is destabilized by synaptic strengthening triggered by learning during waking and by synaptogenesis during development. Sleep diminishes the plasticity load on neurons and other cells to normalize synaptic strength whereas it reestablishes neuronal selectivity and the ability to learn, leading to the consolidation and integration of memories. The use of zebrafish as a tool to assess sleep and its disorders is growing, although sleep in this animal is not yet divided, for example, into REM and NREM states. However, zebrafish are known to have a regulated daytime circadian rhythm, and their sleep state is characterized by periods of inactivity accompanied by an increase in arousal threshold, preference for resting place, and the "rebound sleep effect" phenomenon, which causes an increased slow-wave activity after a forced waking period. In addition, drugs known to modulate sleep, such as melatonin, nootropics, and nicotine have been tested in zebrafish. In this review, we discuss the use of zebrafish as a model to investigate sleep mechanisms and their regulation, demonstrating this species as a promising model for sleep research.


Assuntos
Sono , Peixe-Zebra , Animais , Encéfalo/fisiologia , Ritmo Circadiano/fisiologia , Sono/fisiologia , Sono REM/fisiologia
17.
Neurotoxicol Teratol ; 88: 107034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34600099

RESUMO

The human brain matures into a complex structure, and to reach its complete development, connections must occur along exact paths. If at any stage, the processes are altered, interrupted, or inhibited, the consequences can be permanent. Dopaminergic signaling participates in the control of physiological functions and behavioral processes, and alterations in this signaling pathway are related to the pathogenesis of several neurological disorders. For this reason, the use of pharmacological agents able to interact with the dopaminergic signaling may elucidate the biological bases of such disorders. We investigated the long-lasting behavioral effects on adult zebrafish after quinpirole (a dopamine D2/D3 receptor agonist) exposure during early life stages of development (24 h exposure at 5 days post-fertilization, dpf) to better understand the mechanisms underlying neurological disorders related to the dopaminergic system. Quinpirole exposure at the early life stages of zebrafish led to late behavioral alterations. When evaluated at 120 dpf, zebrafish presented increased anxiety-like behaviors. At the open tank test, fish remained longer at the bottom of the tank, indicating anxiety-like behavior. Furthermore, quinpirole-treated fish exhibited increased absolute turn angle, likely an indication of elevated erratic movements and a sign of increased fear or anxiety. Quinpirole-treated fish also showed altered swimming patterns, characterized by stereotypic swimming. During the open tank test, exposed zebrafish swims from corner to corner in a repetitive manner at the bottom of the tank. Moreover, quinpirole exposure led to memory impairment compared to control fish. However, quinpirole administration had no effects on social and aggressive behavior. These findings demonstrate that dopaminergic signaling altered by quinpirole administration in the early life stages of development led to late alterations in behavioral parameters of adult zebrafish.


Assuntos
Agonistas de Dopamina/farmacologia , Dopamina/metabolismo , Quimpirol/farmacologia , Comportamento Estereotipado/efeitos dos fármacos , Animais , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Atividade Motora/efeitos dos fármacos , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , Tempo , Peixe-Zebra/metabolismo
18.
Front Neurosci ; 15: 657338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276284

RESUMO

Huntington's disease (HD) is a devastating, progressive, and fatal neurodegenerative disorder inherited in an autosomal dominant manner. This condition is characterized by motor dysfunction (chorea in the early stage, followed by bradykinesia, dystonia, and motor incoordination in the late stage), psychiatric disturbance, and cognitive decline. The neuropathological hallmark of HD is the pronounced neuronal loss in the striatum (caudate nucleus and putamen). The striatum is related to the movement control, flexibility, motivation, and learning and the purinergic signaling has an important role in the control of these events. Purinergic signaling involves the actions of purine nucleotides and nucleosides through the activation of P2 and P1 receptors, respectively. Extracellular nucleotide and nucleoside-metabolizing enzymes control the levels of these messengers, modulating the purinergic signaling. The striatum has a high expression of adenosine A2A receptors, which are involved in the neurodegeneration observed in HD. The P2X7 and P2Y2 receptors may also play a role in the pathophysiology of HD. Interestingly, nucleotide and nucleoside levels may be altered in HD animal models and humans with HD. This review presents several studies describing the relationship between purinergic signaling and HD, as well as the use of purinoceptors as pharmacological targets and biomarkers for this neurodegenerative disorder.

19.
Eur J Pharmacol ; 908: 174342, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34265297

RESUMO

Epilepsy affects about 65 million people in the world, which makes this disease a public health problem. In addition to the incidence of recurrent seizures, this neurological condition also culminates in cognitive, psychological, behavioral, and social consequences to the patients. Epilepsy treatment is based on the use of drugs that aim to inhibit repetitive neuronal discharges, and consequently, the recurrence of seizures. However, despite the large number of antiepileptic drugs currently available, about 30-40% of patients with epilepsy do not respond satisfactorily to treatments. Therefore, the investigation of new therapeutic alternatives for epilepsy becomes relevant, especially the search for new compounds with anticonvulsant properties. The therapeutic potential of plant-derived bioactive compounds has been a target for alternative treatments for epilepsy. The use of animal models for drug screening, such as zebrafish, contributes to a better understanding of the mechanisms involved in seizures and for investigating methods and alternative treatments to decrease seizure incidence. The sensitivity of zebrafish to chemoconvulsants and its use in genetic approaches reinforces the contribution of this animal to epilepsy research. Moreover, we summarize advances in zebrafish-based studies that focus on plant-derived bioactive compounds with potential antiseizure properties, contributing to the screening of new drugs for epilepsy treatment.


Assuntos
Anticonvulsivantes , Animais , Humanos , Convulsões
20.
Amino Acids ; 53(7): 1153-1167, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34156542

RESUMO

An increase in plasma L-methionine (Met) levels, even if transitory, can cause important toxicological alterations in the affected individuals. Met is essential in the regulation of epigenetic mechanisms and its influence on the subsequent generation has been investigated. However, few studies have explored the influence of a temporary increase in Met levels in parents on their offspring. This study evaluated the behavioral and neurochemical effects of parental exposure to high Met concentration (3 mM) in zebrafish offspring. Adult zebrafish were exposed to Met for 7 days, maintained for additional 7 days in tanks that contained only water, and then used for breeding. The offspring obtained from these fish (F1) were tested in this study. During the early stages of offspring development, morphology, heart rate, survival, locomotion, and anxiety-like behavior were assessed. When these animals reached the adult stage, locomotion, anxiety, aggression, social interaction, memory, oxidative stress, and levels of amino acids and neurotransmitters were analyzed. F1 larvae Met group presented an increase in the distance and mean speed when compared to the control group. F1 adult Met group showed decreased anxiety-like behavior and locomotion. An increase in reactive oxygen species was also observed in the F1 adult Met group whereas lipid peroxidation and antioxidant enzymes did not change when compared to the control group. Dopamine, serotonin, glutamate, and glutathione levels were increased in the F1 adult Met group. Taken together, our data show that even a transient increase in Met in parents can cause behavioral and neurochemical changes in the offspring, promoting transgenerational effects.


Assuntos
Transtornos de Ansiedade/patologia , Comportamento Animal , Larva/efeitos dos fármacos , Metionina/toxicidade , Neurotransmissores/metabolismo , Exposição Paterna/efeitos adversos , Animais , Transtornos de Ansiedade/induzido quimicamente , Epigênese Genética , Masculino , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...